Unique factors in the human
genome

Jeroen F. J. Laros

May 24, 2005

Contents

1 Introduction

2 The assignment

2.1 Tries
2.2 Determining unique factorso
2.3 The length of the unique factors
3 First attempts
3.1 The original approach
3.2 An alternative approach
3.3 Compressing the table
3.4 Firstresults
3.5 Bottlenecks
3.6 A possible solution L
4 Some serious attempts
4.1 Caching
4.2 Blocking
4.3 Multiple passeso Lo
4.3.1 Distribution
4.4 Preliminary results Lo
5 The final approach
5.1 Preprocessingthedata
5.1.1 Preparation in practice
5.1.2 Preparation in practice, the final version
5.2 Double stranded DNA
5.2.1 Uniqueness e
5.3 Output e
5.4 Results.
5.5 Compression
5.6 Unicityo
5.7 Shortcomings. oL

co oo @ (@)

©

6 The final approach with an extension
6.1 The file format for the final multiple passes solution
6.1.1 Some statisticso
6.2 Filtering
6.2.1 GC-percentage
6.2.2 Temperature
6.3 Filtering simple repetitionso
6.4 Pairing.
7 Utilities
7.1 Frontend
7.1.1 Comb e
7.1.2 Dcomb
7.2 Analysis
7.2.1 Mpass
7.2.2 Repeats
7.2.3 Search
73 Backend
7.3.1 Dcall e
7.3.2 Getinfo
7.3.3 Setinfo

7.3.4 Statistics

8 Conclusions

9 Further research

29
29
30
32
32
33
34
37

38
38
38
39
39
39
39
40
41
41
41
41
42

43

44

Chapter 1

Introduction

The human genome has been charted for some time now and we have learned
much from it since. If you compare the genome to a book and genes to words in
it, then we are at present not able to read this book, sometimes we can read a
word here and there, but most of the time we can not even make the distinction
between words. Therefore it is of great interest that we try to find the genes that
make up the genome. This is done by looking at differences between individuals.
If for example we have two identical individuals except for the colour of their
eyes, then we can perhaps identify the gene or genes that are responsible for the
eye-colour by isolating the difference in the genome between the individuals in
theory.

Of course it is not that simple in practice. We can not simply read a person’s
DNA and compare it to that of another person. The main reason is that the
human genome is far too large to make this practical. Extracting someone’s
DNA is a very tricky job. During the process, the DNA is cut into a large
number of pieces which have to be puzzled together again. For this reason it is
not practical to compare two large strings of DNA.

At present there are a couple of techniques that try to find genes; all of which
make use of markers in the genome. A marker is a piece of DNA that is
distinguishable from all other pieces. By using markers we do not have to puzzle
the DNA together anymore. We simply look whether the marker is present or
not. If for example a combination of markers is always present with individuals
that have blue eyes and always absent with people with brown eyes, then it is
probable that the DNA surrounding these markers forms a gene that is at least
partly responsible for blue eyes.

Some of these techniques make use of the unicity of these markers to duplicate
certain areas of DNA. This is done by making a pair of markers which we call
primers and by putting specially designed tails on these primers. Then these
tails can be used to duplicate the DNA between these primers. This technique
(referred to as Multiplex Ligation-dependent Probe Amplification, or in short
MPLA [1]) works as follows. We take a strand of DNA which matches one of
the primers, and we use the tail attached to the primer as a starting point for

copying. Now we have a strand of DNA that is bounded by our primer at one
end. Now we can duplicate this piece of DNA and do the same to the reverse-
complemented strand. By doing this repeatedly, we end up with a “soup” that
contains mostly the DNA that is bounded by the primers. Because this process
can be automated, the “soup” gets thick enough to work with.

Another process similar to MPLA is a technique referred to as Polymerase Chain
Reaction, or PCR [2]. This technique also requires two primers, but this time
one on each strand. The DNA between the primers is multiplied.

Another thing to do with primers can be the following. Let us assume we already
know the location of a particular gene. Then we need to find a marker for this
gene and we can put this marker on a so-called “bio-chip” or “micro-array”.
Whenever we use this chip on the DNA of an individual, it shall give a positive
reaction if the gene is present and a negative one if it is not.

As can be seen, primers are of major interest for genetic engineers, and therefore
primer design is too. As mentioned before, the human genome has been mapped
for a large part; this has been done to look for similarities between a number
of healthy people. By doing so much of the natural “noise” can be filtered out.
With primer design we mean in the first place the determination of unique
factors in the genome. This is the biggest part of the problem. We are not the
only ones [3] interested in this. Once we have the unique factors, we can filter out
simple repeats and primers that do not have the correct melting temperature
or GC-count.

This project is at the request of Peter H. K. G. Taschner of the Bioinformatics
Support Group of the Leids Universitair Medisch Centrum (LUMC) and in
cooperation with Hendrik Jan Hoogeboom and Walter A. Kosters, both of the
Leiden Institute of Advanced Computer Science (LIACS).

Chapter 2

The assignment

As mentioned before, the design problem is split into multiple parts:
1. Determining unique factors of a certain length.
2. Filtering for simple repeats.
3. Filtering for GC-count and melting temperature.

The reason for this modular approach is because the first step is rather general
and is the largest part of the analysis, in other words, it requires the most work
and it should only be done once. It will result in a very large file which is used as
a “mother file” for the rest of the process, so we can simply change the repeats
filter or the final filter without having to re-calculate the unique factors. Only
one thing is certain at this point: the definition of uniqueness shall not change,
the other constraints can vary (by design).

Only when a new version of the human genome is published [4], we need to re-
calculate the unique factors. Of course there is a natural variation in the human
genome, but the amount of DNA that differs between people is relatively small.
When, for example we compare the DNA of a human and a chimpanzee, we
find that 99.7% of the DNA is equal. Differences between people is even less
than this 0.3%. The genome data we use is the “standard” genome: the average
genome of a number of people.

2.1 Tries

In order to count all occurrences of all combinations of a certain length, we use
a trie. A trie is a pattern-matching datastructure that uses failure links to keep
parsing when a pattern does not match, and this way we only need to traverse
the input once. The failure links resemble the ones in the KMP [5] algorithm.
When failure links are applied to search trees, we call it the Aho-Corasick [6]
method.

\
O

=

on

/-<bb
N

A

Figure 2.1: Example trie

The Aho-Corasick method is a pattern matching algorithm. It constructs a finite
automaton or trie from a dictionary. This trie is then used to locate strings from
this dictionary in the input text.

The tries we will be using look like the one in Figure 2.1. This trie in particular
recognizes all strings of length 2, which are aa, ab, ba and bb. Tries like this have
the property that if the trie is of depth N, it can recognize all strings of length
N (because it is a total tree for length N). Because of this, we do not have to
traverse the trie all the way when we encounter a new string. Each new string
shall result in a recognized state.

Example 2.1.1. Let us say that we want to count all occurrences of strings
of length 2 in the binary string abaababaabaababaababaa. First we construct
the trie of Figure 2.1 using the Aho-Corasick method and then we walk down
(once) while we follow the labels a and b respectively. From now on we stay at
the lowest level of the trie.

When we now read the next letter in our string, e.g., an a, we only have to
follow the branch labeled a of the state we are in, which is “accidentally” the
same state we would reach when we would have started all over again.

Each time a node on the lowest level is reached, we have encountered a string

which is encoded on the branches leading from the root to the node in question.

The only difference in the DNA case is that the trie will be much larger than in
the example and that it has four outgoing branches per node (instead of two)
labeled a, c, g and t. It is important to note that because the trie is total and
all strings have the same length, the failure links only reside on the lowest level
of the trie. This is important because this property makes it possible to use an
implicit datastructure mimicking the behaviour of the trie.

2.2 Determining unique factors

... TACTGCCTAATTACCATAAT. ..
.. .ATGACGGATTAATGGTATTA. ..

Figure 2.2: Double stranded DNA

Since DNA is a double stranded structure, see Figure 2.2, biologists consider
a piece of DNA equal to its reverse complement. Each nucleotide in a single
stranded piece of DNA is accompanied by its complement on the other strand.
These pairs occur in the following combinations a-t and c-g. For example; the
string atggacaaac is considered the same as gtttgtccat. This is because of
two reasons.

1. Single stranded DNA can only be read in one direction.

2. In the double stranded structure each a on one strand has a t on the
other strand and the other way around. The same applies to the g and ¢
nucleotides.

So, whenever we encounter a certain string, we also encounter its reverse complement,
and they should be identified. We have to take this into account when we count
unique factors.

2.3 The length of the unique factors

We chose for the number 18 as the maximum length of unique factors. In the first
place because it is what was requested, but there is also a statistical argument
for it. We have about 3 - 10% nucleotides in the human genome, so we also have
about 3-10Y factors of length N. If we choose N to be 17 and if we assume that
the genome is approximately random data, there is about 341199 ~ 17.5% chance
that a piece of length 17 is not unique. For length 18 this chance is only 4.4%.
Because we are interested in unique factors, length 18 is a good guideline.

The estimate above is only a rough one, if we want to calculate the exact
percentages, we use the following argument; the chance to encounter a string of
length N at a certain position is p = 4%\,, so the chance not to encounter it is
(1 — p) and the chance that we do not encounter it L times is (1 — p)¥. This
makes the chance to encounter it at least once 1 — (1 — p)L. The estimation
assumes that (1 — p)* = 1 — Lp + error, with [error| < 1L(L — 1)p?. For our
example, the error is less than %.

Furthermore, we can extend a factor of a certain length to a larger one, because
if a factor contains a unique substring, it shall be unique itself. Note that we
do not have all unique factors of a certain length when we use such extension
techniques.

Another reason is that the runtime of our core algorithm increases exponentially
with the length we are looking for. This compels us to keep the length as small

as possible.

Chapter 3

First attempts

3.1 The original approach

If we use the trie to count the occurrences of length N, we need 4" nodes in the
lowest level. The number of internal nodes will be: YN aN—i = SN -1y —
(4" — 1), which makes the total amount of nodes: (4 *! —1). The number
of branches will be four times the number of nodes: 5(4V¥*+! —1).

In the case of N = 18, we need a huge amount of memory only to hold the trie.
Let us assume that we use the following minimal datastructure as a node

struct node {
node *child[4];
};//node

In this case each node consists of four 32-bits (= 4 bytes) pointers, which makes
the total amount of used memory 4 - ($(4'8+! — 1) = 366503875924 bytes (341
Gigabytes). However, since we can only address 4 Gigabytes of memory with
a 32-bits integer, we have to use 64-bits pointers, which makes the amount
of memory 683 Gigabytes. Furthermore, we need some sort of counter at the
leaves of the trie (the nodes at the lowest level). This will increase the amount
of memory by at least another 48 bytes (another 64 Gigabytes). Because of this
calculation (and the fact that we did not have an 64-bit operating system at
hand) we did not even make an attempt to realize it.

3.2 An alternative approach

As mentioned before, we can mimic the behaviour of the trie without actually
building it. We need at least a table with 4"V entries in order to count the
occurrences of factors of length N; these entries correspond with the leaves of
the trie. If we look at a piece of DNA as an integer written in base-4, then we
can easily calculate which node of the trie will be reached.

Let ay_1...ap be a piece of DNA in base-4, then the index in the table is:

N-1
E CLZ'4Z
=0

Note that we can do this only because all internal nodes are used only once and
because the trie is total.

We can now make a table with 4~ = entries, and we only have to increment
the values at the indexes we encounter as integers in base-4. The next index can
be calculated by removing the most significant element and concatenating the
read value as the least significant element.

This approach is in principle the best we can do. It hardly needs memory at all,
but the table (on disk) will always be 64 Gigabytes (4'8 = 64Gb).

Another advantage in using numbers in base-4 is that it is trivial to implement
them in the binary number system, making the operations very fast in comparison
to string operations.

22N

3.3 Compressing the table

However, since the human genome “only” has about 3 - 10° nucleotides, which
is much smaller than the number of 4 letter strings of length 18, our table will
mostly consist of zeros. Even when we store both the index (as explained in
Section 3.2) and its value (that is 40 bits, 36 for the index and 4 for the value),
we only need 40 - 3 - 10° bits for the table (about 14 Gigabytes). This is the
worst case scenario, it would mean that each factor of length 18 is unique in the
human genome.

This approach however, is much more complicated than the previous one and
the result is not that great either. A problem with this approach is searching
for the factors afterward, because the position in the uncompressed table is the
factor (coded in base-4). This position is lost when we compress the table. We
could make an index for the compressed table, so we do not have to decompress
the entire table when we do a lookup in the table. However, this is not very
practical when the analysis is still in progress.

Because the previous approach is probably the fastest, we will use that one. And
if disk space is an issue, we can always compress the result after-wards.

3.4 First results

The first results were not very encouraging. It took more than four hours on a
PII at 450MHz to analyze 2 Megabytes of random data counting unique strings
of length 13. These results are more than disappointing: not only are we faced
with the linear increase of complexity (from 2 MB to about 700 MB for the
human genome) but there is also the exponential increase from 43 to 48 when
we count strings of length 18. Rough calculation brings us to a runtime of about
70041813 — 1433600 hours (163 years).

10

3.5 Bottlenecks

The main reason for the bad performance is probably the disk access for the
output file. This is because it occurs at random positions and since disks are
devices with heads and spinning magnetic disks, it is not hard to see that linear
access is much faster than random disk access; the heads don’t have to be
repositioned when the disk is writing linearly. We can see this clearly in the
case N = 18, because we only need to manipulate 0.7G of the 64G, and the
initialization of 64G (on a modern machine) takes about an hour, while the
analysis of the data (based on the calculation above) takes almost an eternity.
If we can somehow linearize the disk access for the output file, analysis should
take less time than the initialization of the output file. This is because we do not
need to write nearly as much data to disk during the analysis phase compared
to the initialization phase.

One way of approximating that behaviour is by caching the results, and by
sorting the cache before it is written to disk.

If we for example take a cache of 100M and use a naive approach to make the
cache, that is: store both the index as well as the value, then we would flush the
cache approximately 140 times. We can also only store a tag and calculate the
disk address from the location in the cache.

Example 3.5.1. Let us say that we want to store the value x at position 1234
in a cache that has 1000 positions available, then we store the value = and the
tag with a value of 4 at position 123. If we now want to increase the value of
1234, we look in the cache at position 123 and check if the tag equals 4. If it
does we can increment x. Otherwise we need to write the value of position 123
to disk (at position 123 concatenated with the value of the tag) and load the
correct value from disk (position 1234) in the cache and set the tag value to 4.
Then we can increment x.

By doing this, we can presumably decrease the cache flushes to about 14 or 15,
which results in a runtime of about 14 or 15 hours.

Note that the predictions above are only rough estimates, especially the one
about the runtime. It assumes that writing 50M spread over 64G linearly to
disk takes just as long as writing 64G. More assumptions like this are used.

3.6 A possible solution

Probably, using a cache is not as useful as we thought. This is because the data
has a high degree of randomness. This will result in the same problems we have
experienced before. However, the cache would still have a few advantages, the
cached results can be incremented without having to read from disk and by
flushing the cache we approximate linear writing to disk, which is faster than
random writes.

These advantages are also present when we buffer the results in memory another
way, especially when we use a self-sorting buffer. When the buffer is full, we can

11

flush part of it to disk.

A possibility is to use a tree as a buffer; the path to a leaf is the segment. If
the tree gets too large, we can take a sub-tree, flush it to disk and remove it
from the tree. The fuller the sub-tree is, the more performance gain we shall
have. We could also keep track of the most used path in the tree and leave this
part of the tree in memory for as long as possible. There are two main problems
with these solutions, one is that they need huge amounts of memory, essentially
the same amount as calculated in Section 3.1. The other is that the DNA is
approximately random, so there is probably no such thing as a subtree that is
far more larger than the others, or a path that is taken far more times than the
others.

12

Chapter 4

Some serious attempts

4.1 Caching

We implemented a cache with 16 bit cachelines as shown in Figure 4.1.

File

Tag

Data

Cache

Cachelines

A cacheline is a datastructure consisting of two fields, a data field and a tag
field. The number of cachelines c is less than the filesize f (in bytes), otherwise
the file would fit in memory. Therefore the tag field is present, to hold an offset.
Each cacheline addresses a number of values and which of those values is in the
cacheline is stored in the tag field. We shall now go into more detail than we

did in Example 3.5.1.

Figure 4.1: Cache

13

The size of the tag field ¢ is given by
f

t =2log=,
c

where f = 4. Note that f must be a multiple of ¢, otherwise we waste bits in
the tag field. For this reason we always choose ¢ to be a power of 2. f Is divisible
by ¢ because f is a power of 4 and assumed to be larger or equal to c.

Let m be a bitmask such that

m = ~“(0xFFFF << t).

in which the ~ operator denotes the binary NOT and the << operator denotes
the logical SHIFT LEFT. The hexadecimal value OxFFFF is the maximum value
of an 16-bits integer. When viewed in binary, it consists only of 1’s. By shifting
this value by a certain value, we can use it as a bitmask to select part (in this
case the lower) of an integer.

To store a value v in the cache at position i, we first need to calculate in which
cacheline ¢; the data will be stored. This is calculated easily by:

c1 =1 >> t,

where >> denotes the logical SHIFT RIGHT.
We use the mask to calculate the tag:

t=1 & m,

where the & operator denotes the binary AND. The value is stored in the data
field as follows:
v=1 << t.

Example 4.1.1. Let N = 18, then the filesize f = 4'¥. Let the amount
of available random access memory be 512M (536870912 bytes) and let each
cacheline be 16 bits (2 bytes). This makes the number of cachelines ¢ 268435456.

The tagsize t is
18

2 2 .
log——— = 2]og 256 = 8 bit
B536s70012/2 ° 8,

this makes the tagmask
~(0xFFFF << 8) = 0x00FF

which leaves 8 bits for the datafield (making the maximum value of the datafield
255). Now let us assume we want to store something at position 0x123456789.
Then

c1 = 0x123456789 >> 8 = 0x1234789,

and the tag is

t = 0x123456789 & 0xO00FF = 0x000000089,

14

So at cacheline 0x1234567 the tagfield will be set to 0x89. If the tag already has
this value, we can increment the data field. If the tag has another value, then
we must first add the datafield to the value on disk at position

(0x1234567 << 8) | oldtag.

If the datafield has value 0, then this cacheline has not been used, so we do not
need to write to disk.

4.2 Blocking

Since random disk access is slower than linear access, it is beneficial to write
blocks of data instead of single bytes. Flushing cachelines is random because
our input data is approximately random.
Operating systems (and even disks themselves) usually read and write to disks
in a so-called blocking mode. This means that not one, but several hundreds of
bytes, which we shall call a block, are read or written at once. We shall refer
to the size of this block as blocksize. The blocksize is usually 512 bytes, but
multiples of this value can also be used.
We can use this fact while flushing cachelines; first we determine the blocksize
b, then we see which cacheline must be flushed and then we look if there are
neighbouring cachelines that also fall into this block. Theoretically, we gain a
speedup as long as each cacheline addresses less memory than the blocksize,
otherwise this technique is useless. The expected speedup is proportional to:
c-b

f

By doing this we can write n cachelines to disk in less time than it would take
to make n random disk accesses.

The speedup follows indirectly from the fact that we can rely on the fact that
the cachelines which have been flushed to disk are empty (and therefore ready
for use without flushing) the next time we write to the cache.

4.3 Multiple passes

Even with caching and blocking, the amount of memory is still the problem. We
simply do not have enough memory to make this technique work.

For example, assume that we have 1 Gigabyte of memory available; 30 bytes are
needed to address this amount. For the 64 Gigabytes of output data, we need
36 bits. Because we can use the positions in memory as part of the factor (the
piece of DNA translated to an integer), we need 6 bits of tag data. This only
leaves us with two bits for the data field, which means we can only count to 3.

1

Because we have g7 of the memory we need, the cache will be full after about

& of the input has been read. Furthermore, we probably want to use more than

15

two bits to count the factors, which makes the amount of available memory even
less adequate.

So we turned the problem around. We first look how much memory we have, call
this amount a, for practical purposes a needs to be a power of 2. Then calculate
the size of the output file (4", with N the length of the factors we are looking
for), call this b. The number of passes can be calculated by ¢ = %.
Now the algorithm proceeds

1. Calculate the amount of bits needed to address the memory by m = 2log a,
let ¢ = 0 be the current pass.

2. Go in search for all numbers of length N starting with 7. So in iteration
1 we search for ¢ concatenated with all numbers of length m in parallel.
Increase i by one.

3. Repeat step 2 until i = c.

We call this method the multiple passes method.

Note that this technique heavily relies on the fact that we have converted the
DNA strings to numbers, and therefore we refer to the strings to be found as
numbers in step 2.

This approach has a couple of advantages, the most important of them being:

e There is no random disk access anymore.
e The algorithm can be distributed to a maximum of ¢ computers.

e Since the memory has an implicit data structure, we have no need for tags
anymore, so effectively we have twice as much memory which we can use.

As far as we can tell, there is only one drawback, and that is that we need to
parse the input ¢ times.

However, the linear disk access seems to make up for the fact that we need to
parse the input multiple times.

4.3.1 Distribution
By altering our algorithm in the following way we can distribute the calculation:

1. Choose two values ¢ and j with 0 < i < j < ¢, ¢ being the pass to start
with and j the pass to end with.

2. Calculate the amount of bits needed to address the memory by m = 2 log a.

3. Go in search for all numbers of length N starting with <. So in each
iteration we search for ¢ concatenated with all numbers of length m.
Increase i by one.

4. Repeat step 3 until ¢ = 7.

16

We could perhaps use this technique to calculate unique factors of length 19
and larger. Of course we need 4x the amount of computers to have a speedup
of 4, but with the modern superclusters at our disposal consisting of about 200
or more nodes, we can have a rather nice speedup.

4.4 Preliminary results

We took 2 Megabytes of random data as DNA input and counted all factors (for
different lengths) in this input (this is about 3% of the length of the genome).
The tests to get these results were done on an Intel Pentium II at 450 MHz,
with 256M RAM. Since the input data is random, it means that the figures in
Table 4.1 are probably “worst case” because counting random factors will result
in random disk access.

length | output | original | cached | cached and blocked | mpass
8 64K 5m 19s | 4.4s 2.4s

9 256K 5m 28s | 5.2s 2.6s

10 1M 5m 42s | 6.5s 3.6

11 4M 8m 25s | 8.9s 4.3s

12 16M 30m 17.6s 4.4s

13 64M 4h 10m | 55.2s 8.2s

14 256M | oo 58m 18m 26.8s
15 1G 00 1h 44m | 46m 1m 40s
16 4G 00 1h 19m Tm 25s
17 16G 00 1h 35m 29m 30s
18 64G 00 2h 24m

Table 4.1: Different strategies

We see the length of the strings we are looking for in the first column and the
output size of the table in the second column. In the next four columns we
compare the different strategies. The first one is the original approach, that is,
we put the table on disk and write directly to this table. This method is discussed
in Section 3.2. The second one is like the first one, except we use a cache. This
cache flushes a cacheline to disk if the cacheline in question is already occupied,
as discussed in Section 4.1. The third approach is like the second one, except
upon a cache miss we look which cachelines fall into a disk block and flush all
of these cachelines to disk, leaving them empty as discussed in Section 4.2. The
final approach is the multiple passes method as discussed in Section 4.3.

This differs from the other approaches because it makes maximal use of available
memory and only does disk access when it is absolutely necessary. We say
maximal use of memory, because we only use memory for data, not for tags. We
only use the memory offset for the representation of the factors. Furthermore,
it is not difficult to use only 4 bits instead of 8 to count the factors, effectively
doubling the memory capacity. Note that in this case we can only count to 15,

17

but this is more than enough to find unique factors, not to count all factors
though.

18

Chapter 5

The final approach

5.1 Preprocessing the data

As mentioned before, we convert the DNA data from ASCII to binary. This has
three reasons:

1. The data is compressed by a factor of 4 (by using only 2 bits per nucleotide),
so we need to use only % as much memory.

2. Because of reason 1 we can read data at 4 times the speed.

3. Calculation with base-4 numbers is trivial compared to string operations
with respect to the amount of calculation.

If we assign the right value to each letter, we can even take advantage of binary
operators like the NOT operator. We have to make sure that a and t are each
others complement in the encoding (as they are in nature), as well as ¢ and g
as can be seen in Table 5.1. Hence the order a, ¢, g, t (which happens to be the
alphabetical one).

Nucleotide | encoding

a 00
c 01
g 10
t 11

Table 5.1: Binary encoding of the nucleotides

This is how we read the binary data. Since we are interested in strings of length
¢ we keep track of the last ¢ nucleotides. When we read a new nucleotide, the
string is shifted to the right by two bits, and the new two bits are shifted in (at
the least significant end). This is a very inexpensive method to keep track of
the last read string.

19

Of course there are some problems. The first one is that the ASCII data (as
available via [4]) does not consist of only four letters. It has an alphabet of 10
letters. These are the normal letters, {a, c, g, t}, the normal letters written
in capital, {A, C, G, T} and the letters {n, N}. The capitals denote repeating
segments or sequences of “low complexity” in the DNA so they are for the
moment of not much interest to us. The letters 'n’ and 'N’ denote the absence
of data, so they are not of much interest either.

Repeating sequences are pieces of DNA that have a repetition with a period of
12 or less.

Large repeating sequences are the result of evolution, and these are not masked
in the ASCII data. There are several processes that result in these repeats, one
of them being the existence of more copies of a certain piece of DNA in the
genome. Apparently, in the course of evolution, particular pieces of DNA got
multiplied and copied to a different part of the genome. So we sometimes find
a large part of the genome in more than one places.

Then there is a phenomenon named “molecular parasites”, they are pieces of
DNA that do not code for proteins, and they are “mobile”. These pieces get
copied and transfer themselves to other parts of the genome, so they can get
copied again.

However, we do need to take these letters into account. For example, suppose
we are looking for all strings of length 4. We can not convert a string like this:
ATATATttnttaatNNN to ttttaat, we have to convert it to tt and ttaat, because
otherwise we would also count a substring like tttt, which is not part of the
original string.

One way of circumventing this problem is to remove all capitals and the letter
'n’, and by keeping track of when in the output file we need to re-calculate the
current number, as explained in Section 3.2. We put these offsets in a separate
table because we would otherwise have to use escape sequences to differentiate
between the DNA data and the offset data. Furthermore, using a separate table
is faster for the same reason (we don’t have to scan for escape sequences).

In our example we get the two files, one containing the binary equivalent of
tttta and one containing the offsets 6, 2, 1, 5 and 3. To decode these files, we
take the offsets table and first write 6 n’s, then we decode 2 nucleotides, then
we write 1 n and 5 more nucleotides. Finally we write 3 more n’s, which results
in nnnnnnttnttaatnnn, the same string we had before, except all the capitals
have been converted to n’s.

An other, more trivial, way is to split the data into small files. The drawback is
that for chromosome 1 alone we get 306285 files. This is not very practical.
Fortunately, only 43% of chromosome 1 is useful data, and this simplifies our
problem even more (we only need to analyze about 300 Megabytes of data
instead of 700, these numbers are extrapolated from Table 4.1). This would
bring the total calculation time back to about 300 hours for the multiple passes
method. Distribution to about 20 machines will make the calculation finish in
15 hours, about one night ...

Note that we still assume that the computers are Pentium II’s at 450 MHz, so
we believe we have found an adequate solution. Although the processor speed

20

is not the issue, we have measured speedups of 4.3 on a Pentium IV at 2.8 GHz
with 512M of memory (we only made use of the processor and did not allocate
more memory than in our previous tests).

5.1.1 Preparation in practice

We have made a program that converts the ASCII input to binary and skips
all non-{a, c, g, t} characters. We also have to make a file that has indexes to
determine when a strand of DNA is bounded by invalid characters. By doing
this we have compressed chromosome 1 (238 Megabytes) to 26 Megabytes of
binary input and 1.2 Megabytes of indexes. That is only 11.2% of the size of the
original input. For convenience we have added a comment field in our file; this
enables the user to put the contents of a custom made comment file into the
input file. It might be useful to put data like the date, the order of chromosomes
and things like that in this field. The options for this preparation program are
given in Table 5.2.

Name | default | comment

-i NULL each -i option gives an input file
-0 chromFa.bin | name of the output file

-c NULL name of the comment file

Table 5.2: Preparation options

This program can take more than one input file, because the genome data we use
is partitioned in chromosomes. A typical use would be: =i chril.fa -i chr2.fa
...=1 chrM.fa -c comment.txt, where chrX.fa are the chromosomesin ASCII
format, and chrM. fa is the mitochondrial DNA. The “~i chr*.fa” convention
can not be used because this would result in a line like “~i chrl.fa chr2.fa
...the reason we did not implement this is because this wildcard expansion may
give a different order than we would expect. For example; when we have the files
1,2,3,...,10, 11, 12, the expansion of * would result in 1, 10, 11, 12, 2,3
The result of this program is a file with the format described in Table 5.3.

21

Name offset size comment

1D 0x0 0x9 “binDNAO01”

Reserved reserved for flags and variables
Index pointer 0x100 0x4 pointer to index field

Index size 0x104 0x4 size of index field
Boundaries pointer | 0x108 0x4 pointer to boundaries field
Boundaries size 0x10c 0x4 size of boundaries field

Info pointer 0x110 0x4 pointer to info field

Info size 0x114 0x4 size of the info field
Reserved reserved for pointers

Data 0x200 variable | raw DNA data

Index variable | variable | indexes

Boundaries variable | variable | boundaries of chromosomes
Info variable | variable | the info field

Table 5.3: Input file format

The ID string is for internal purposes, is is used by other utilities to make sure
that the user has given the correct file for input. The index pointer points to
an array of 32-bits indices and the index size is the number of elements in this
array. The boundaries pointer points to a similar array and the info pointer
points to the info field.

The index array is the array discussed in Section 5.1, except that the array is
no longer in a different file, hence the index pointer and size.

The boundaries array contains the offsets of the different chromosomes, and the
info field is discussed above.

5.1.2 Preparation in practice, the final version

Due to new developments in genetics, the input is treated differently than
expected. Much of the DNA we used to call “junk DNA” might be interesting
after all and genes might consist of fewer nucleotides than expected. That is why
we must take the whole genome including the masked repeats, which makes our
problem a bit more difficult, about a factor of ten (fortunately this is nothing
compared to the complexity of the problem).

So when preparing the data, we only filter out the n and N’s, and convert other
symbols into lower case.

5.2 Double stranded DNA

Our input data is single stranded DNA, but in practice we use double stranded
DNA, see Figure 2.2. This introduces a problem. Each time we count the
occurrence of a primer, we also have to count the reverse complement of the
primer, but since the reverse complement is unique for each primer, it is not
necessary to count each primer twice (once for the primer itself and once for

22

its reverse complement), but counting the pairs is good enough (or even better
from a biological point of view).

What we mean by this is that whenever we encounter a string (and its reverse-
complement), we do not increase the counter of the string and the reverse-
complement, but we choose one of the two as a representative of the pair. We
do not increase the counter by two when we encounter a certain pair, but by
one.

Then there is the issue that we need to determine where the primer pair is
stored. Remember that the primers also form a number which is the offset in
the output file. We chose to store the information about a primer pair at the
lowest offset.

5.2.1 Uniqueness

We use the term uniqueness in the following way. A factor is unique if the factor
itself can be found precisely once and if the reverse complement can not be
found on single stranded DNA.

An efficient way of calculating the reverse complement is the following; since
we keep track of the last ¢ nucleotides, we can also keep track of the last ¢
nucleotide complements in the reverse order. All we do is shift the reverse-
complement string to the left (instead of the right) and shift the complement
of the read nucleotide in at the most significant side. This also is a rather
inexpensive operation.

We identify a pair of complementary strings, and choose one of them as a
representative. Since we know at all times the string itself and its reverse-
complement, we only have to look at which is the smallest (lexicographical
ordered), and this can be done with the standard < operator.

5.3 Output
Name | default comment
-i chromFa.bin | name of the input file
-0 chromFa.out | name of the output file
-c NULL name of the comment file
-1 18 length of the primers
-m 64 free memory in Megabytes
-b 0 begin pass
glength
-p emEe number of passes
-a 2 compression algorithm O=none, 1=fast, 2=strong
-s NULL if given, treat the input data as single strand

Table 5.4: Analysis options

23

Table 5.4 lists the options for the analysis program. The -i option must be
followed by a filename created by the preprocessing program. The length of the
primers we are looking for can be adjusted and the amount of free memory
too. Because this program can be distributed to multiple computers in parallel,
the possibility is given to set the upper and lower boundary for the passes, as
explained in Section 4.3.1. The compression methods are discussed in Section
5.5. For testing purposes, we can still treat the data as a single strand. The -b

option must be followed by an integer between 0 and If;zzc
Name offset size comment,
ID 0x0 0x9 “binCNT01”
Compression flag | 0x9 0x1 indicate compression method
Length Oxa 0x1 length of the primers
Begin Oxb 0x4 begin pass
Passes 0xf 0x4 number of passes
DNA type 0x12 0x1 Single or double DNA
Reserved reserved for flags and variables
Info pointer 0x100 0x8 pointer to info field
Info size 0x108 0x4 size of the info field
Reserved reserved for pointers
Data 0x200 variable | raw data
Info variable | variable | the info field

Table 5.5: Output file format

The output file is the result of the analysis program. The format is shown in
Table 5.5. Again, we use an ID string to make sure other programs can verify
that their input file is of this format. The compression flag indicates the method
of compression as discussed in Section 5.5, it is needed to decompress the file,
otherwise the decompression program would not know which method to use.
The length of the primers is also included, as well as the begin and end pass.
The latter two values are of importance when the analysis has been distributed;
the results must be put together again in the correct order.

5.4 Results

The first results, shown in Table 5.6, are obtained from analyzing chromosome
1. The original size of this chromosome is 238M, compressed it is 26M plus 1.2M
of indexes. This accounts for about 9% of the total genome.

24

length | expected output | output (compressed) | passes | time

8 64K 64K 1 15.0s
9 256K 258K 1 19.1s
10 1M 1.1M 1 30.1s
11 4M 4.9M 1 39.8s
12 16M 21M 1 48.6s
13 64M 71M 1 1m 9s
14 256 M 175M 2 1m 54s
15 1G 273M 8 3m 59s
16 4G 332M 32 10m 54s
17 16G 364M 128 39m

Table 5.6: Multiple passes

The analysis is done on a Pentium II at 450MHz with 256M of memory, half of
which is used as buffer (the -m option of our program). The result is compressed
before it is written to disk. Note that for small output files, compression results
in a larger file because compression (Section 5.5) relies upon the fact that the
table is sparse. The compression algorithm starts to do significant compression
when we analyze lengths of 14 and above.

1.07374e+09

3.35544e+07
1.04858e+06

32768 | :

#factors

1024 R

1 2 4 8 16 32 64 128 256
#occurrences

Figure 5.1: The non-repeating part of the genome

25

In Figure 5.1 we see the result of an analysis done on the non-repeating, single
stranded part of the entire genome. In Figure 5.2 we see the result of an analysis
done on the entire single stranded genome, including the repeating part. In these
figures the number of occurrences are on the z-axis, so all unique primers are
on position 1, the ones that occur two times are on position 2. The number of
these occurrences are on the y-axis. So for example there are no unique factors
of length 9 in Figure 5.1 and there are 4 factors that occur 3 times.

3.43597e+10
1.07374e+09
3.35544e+07

1.048586+06 |-

#factors

32768

1024

32t .

1 2 4 8 16 32 64 128 256
#occurrences

Figure 5.2: The whole genome

In Figure 5.3 we see the results of the first analysis (for length 18) done on
double stranded DNA.

26

1le+10 r T T —— T . ——————
1e+09 |
1le+08 |

1le+07 |

factors

le+06 |-
100000

10000 -

1000 : —_— : —_—

1 10 100
occurrences

Figure 5.3: The whole double stranded genome (length 18)

5.5 Compression

We have implemented three schemes for the output file (shown in Table 5.5):
no compression, fast compression and strong compression. The first one is self-
explanatory, the second one goes as follows. If we read a zero, we stop writing
until we read a non-zero, then we write a zero and the amount of skipped
positions, this technique is sometimes referred to as “run length encoding”. If
for example we compress the string 022300000033202001 (for simplicity we only
count up to 4), we write it as 0122306332012021. As you can see, this method
assumes that there are a lot of chained zeroes in the output file. A weak point
in this method is that we use an integer to count the skipped positions. This
is not done in the strong compression algorithm, here we take a byte and if its
value exceeds 127, then we take another byte. A string with 130 zeroes would
be encoded as 0102 (128 + 2). This method is especially good when the amount
of chained zeroes is not that large (smaller than 127, but close to it) on average.

27

5.6 Unicity

When we have a unique factor of length N, we must also have two unique
factors of length N + 1, and these two factors are very similar for they have
N nucleotides in common. This means that when we have a unique factor of a
certain length, it will result in clusters of unique factors of larger lengths. We
could make use of this principle to find unique factors of large length, without
doing an extensive analysis. Note that by doing this we shall not find all unique
factors of this large length in the genome, but since the amount of unique factors
of length 18 is vast, we may not need to do analysis on larger lengths because
we already have so many factors. Note that the larger the length, the higher
the probability that a given factor is unique within the genome. When we take
a piece of DNA of length 30, the chance it is unique is very large, except when
it is part of a repeating part of the genome, which would also be detected when
doing analysis on lower lengths. Formally, we can say that if the string x is
unique then any string on the genome containing z is also unique.

5.7 Shortcomings.

There is really only one shortcoming in the solution we chose, and that is that
the counting information is separated from the genome. To solve this problem
we chose to reserve two bits after each nucleotide in the input. We have decided
to count to 4 instead of 256, his is done because counting to 4 is more than
enough to determine unicity. This output format is quite different from the one
we discussed earlier.

Remember that a, c, g and t are encoded as 00, 01, 10 and 11 respectively.
So instead of atgcagat we write a0t0g0c0a0g0a0t0 (0 is 00 in bits), which
makes the input file twice as large as previously. The idea behind this is that
the information can be re-integrated with the input again. Let us say that we
are looking for factors of length 3. When we see a string like a0t0g3c2a0glalt0
it means that the string atg occurs 4 times, tgc occurs 3 times and so on. We
shall refer to this inserted data as a mask. Note that we denote the number of
times a factor is present in the genome by N — 1 if it is present IV times. We do
this because in this representation, we will not encounter strings 0 times and it
would be a waste when we did not make use of the number 0, which is, in this
case, where we use two bits for counting, % of the possible permutations. This
also means, however, that we do need to use more bits in the actual counting
part of the analysis. We must initialize the memory to a default value (usually
0) and this value can no longer be used in the counting process. That is why
we use 4 bits to count the data in memory. We chose this particular number
because it is still rather simple to implement; when using 3 bits this would be
far more difficult, and it would require more processing time, counteracting the
gain we get from the increase in memory positions.

The borders of the chromosomes and the borders determined by n’s pose a small
difficulty. When for example we count all occurrences of length 18, the first 17

28

positions must be skipped. We chose to keep the counting data in its initial
state and to store the analysis length (in this case 18) in the header of the file.
A program that reads this file must take this problem into account.

In order to produce this output, we doubled the number of passes, for each pass
to analyze the input, we need an additional pass to re-integrate the results in
the form of a mask.

An additional advantage of this technique is that the output file is always of the
same length (3 x 107 - 4 bits).

29

Chapter 6

The final approach with an
extension

6.1 The file format for the final multiple passes
solution

Now we discuss the file format for the multiple passes method, this is the solution
we ultimately chose to use, because this method has the best performance.

Name offset size comment

ID 0x0 0x9 “binDNAO1”

Output flag 0x9 0x1 0 if it is DNA data, 1 if it is
DNA data + mask

Reserved reserved for flags

Length 0x50 0x4 length of the primers

Reserved reserved for variables

Index pointer 0x100 0x4 pointer to the index field

Index size 0x104 0x4 size of the index field

Boundary pointer | 0x108 0x4 pointer to the boundaries field

Boundary size 0x10c 0x4 size of the the boundaries field

Info pointer 0x110 0x4 pointer to info field

Info size 0x114 0x4 size of the info field

Reserved reserved for pointers

Data 0x200 variable | raw data

Info variable | variable | the info field

Table 6.1: Input/output file format

The output flag denotes whether or not the data has been processed yet. If this
flag is 0, the value of the Length variable is meaningless. The length variable
denotes the length of the unique primers we searched for. The index pointer

30

points to an array of indexes; these indexes denote the pieces of DNA bounded by
either chromosome boundaries or unknown nucleotides (n). The size of this array
is also in the header because this is rather convenient for memory allocation.
The boundaries pointer is similar to the index pointer, except that the array it
points to only denotes chromosome boundaries. The info pointer points to the
information field.

At three places in the header space is reserved for future expansions; there is
room for flags, variables and pointers. We chose not to mix these things because
the file format is more structured like this.

6.1.1 Some statistics

We ran the Mpass program on a Pentium IV at 2.8 GHz with 256 Megabytes
of available memory. Table 6.2 shows the runtimes for length 9 ... 18. Analysis
has been done on the entire genome including the mitochondrial DNA and the
repeating sequences.

Length | passes | runtime
9 1 Tm
10 1 8m
11 1 13m
12 1 17m
13 1 20m
14 1 22m
15 2 31m
16 8 1h 20m
17 32 4h 37m
18 128 21h 6m

Table 6.2: Runtimes for the Mpass program

Figure 6.1 shows the same data, represented graphically. We can see that at
length 15 and above, we have run out of memory and we need to do more than
one pass over the input. Hence the graph gets more steep from this point on.

31

10000 F T T T T T T T T

1000 F

100 |

runtime

10 |

1 Il Il Il Il Il Il Il Il

9 10 11 12 13 14 15 16 17
length

Figure 6.1: Runtimes in minutes for the Mpass program for factors of
given length

Figure 6.2 essentially shows the same data as Figure 5.3, but this time we show
the results for lengths 11 ...18. We could not do this before, because we did
not have enough disk space to store the results of the analysis. With the new
(masked) approach, we have more than enough disk space to do this.

32

18

le+10 i
1e+09 :;:;j,;,;;:_,;,
1e+08 :
le+07 :

1e+06 |

#factors

100000 |
10000 [

1000 [

100 [1 1 1
1 2 3 4

#occurrences

Figure 6.2: The entire genome counted

The “18”-line crosses the y-axis at point 1497154670, which means that 52% of
the number of factors of length 18 in the human genome are unique.

6.2 Filtering

After having solved the counting problem, we took on the other problems, like
determining the GC-percentage and the melting temperature, the temperature
at which a string of DNA lets go of its reverse complement.

We chose to keep track of both variables on the fly while reading in each new
nucleotide, instead of calculating them over and over again. This was done
because most factors we are looking for are unique.

6.2.1 GOC-percentage

Because we already make the reverse complement of the input string on the
fly (just like we did in the first stage), keeping track of the GC-percentage is
not very difficult. The only thing we need to do is observing what we shift out
and what we shift in. So when we look at the least significant nucleotide of the
reverse complement, and this is a ¢ or a g, we decrease the GC-count; then we

33

shift in the new nucleotide, and if the least significant nucleotide on the original
strand is a ¢ or a g, we increase the GC-count. The percentage, of course, is
calculated by dividing the GC-count by the length.

Example 6.2.1. We determine the GC-percentage of all strings of length 4 in
the string attagcaaga.

string | change | GC-percentage
atta g

attag +1 %

ttagc +1 %

tagca %

agcaa %

gcaag | —1+1 %

caaga -1 i

The underlined nucleotides are shifted out, the overlined ones are shifted in.

We actually use both the string itself and its reverse complement. This is because
it is faster to extract the least significant bits (this operation is only one bitwise
AND, otherwise a SHIF'T of variable size must be used). So instead of observing
what is shifted out at the most significant bits of the original string we observe
what is shifted out at the least significant bits of the reverse complement. We
can use this technique because a g or a ¢ on one end of the fragment implies a
c or a g on the other end of the reverse-complement.

6.2.2 Temperature

An algorithm to calculate the melting temperature of a piece of DNA is given in
[7]. We chose to re-write this algorithm to act like the one calculating the GC-
percentage. By doing this we can easily and swiftly calculate the temperature on
the fly for many strings of DNA in succession. Another program that calculates
melting temperature and GC-percentages is Primer3 [8]. The formula for the
temperature is mainly based on the number of successive pairs occurring in
the fragment. We only have to look at the two last nucleotides on the reverse
complement (the first ones to be shifted out), do a lookup in a table, and
subtract the result from the temperature. Then we do the shift and increase
the temperature with the result of a lookup in a table while we look at the two
last nucleotides of the original string (the last ones that have been shifted in).
Because internally we use integers to keep track of the temperature, we do not
encounter rounding errors.

34

Interaction | AH | AS
aa/tt 9.1 | 24.0
at/ta 8.6 | 23.9
ta/at 6.0 | 16.9
ca/gt 5.8 | 12.9
gt/ca 6.5 | 17.3
ct/ga 7.8 | 20.8
ga/ct 5.6 | 13.5
cg/ge 11.9 | 27.8
gc/cg 11.1 | 26.7
gg/cc | 11.0 | 26.6

Table 6.3: Nearest-neighbour thermodynamics

Example 6.2.2. We determine the melting temperature of all strings of length
6 in the string attagcaaga. We start with the initial calculation

(at) + (tt) + (ta) + (ag) + (gc)
After this we can re-use the result like we did with the GC-count.

string lookup
attagca | — (at) + (ca)

ttagcaa | — (tt) + (aa)
tagcaag | — (ta) + (ag)

agcaaga | — (ag) + (ga)

Again we use both the string itself and its reverse complement, for the same
reason we did this when calculating the GC-percentage. Also analogous to
determining the GC-percentage we assume that the melting temperature is
invariant under reverse-complementation, which must be the case, because it
is in the definition of melting temperature (and it can also be seen from the
lookup tables we use, see Table 6.3).

6.3 Filtering simple repetitions

Simple repeats are not of much interest to biologists, that is why we need to

filter them out.
Repeats can be denoted in the following way:

e A letter from the alphabet is denoted with n.

e A string of a certain length is denoted with (n...n) with m € N*.

m

35

e A repetition of a string or letter is denoted by an exponent.

So (nn) means all strings of length 2. And (nnn)?

with substrings of 3 repeated 2 times.

/‘\

a \0//"\

means all strings of length 6

reject

’ a/.\b\/a

Figure 6.3: Unwired repetition trie

Figure 6.3 shows an unwired trie to filter out the repetitions (n)? and (nn)?
over the two letter alphabet {a,b}, i.e., aaa, bbb, abab and baba. Note that aaaa
and bbbb are already excluded. Whenever we reach the node at the right, we
have found a simple repetition and we can disqualify that part of the input.
Note that this trie is not yet wired. The wires are failure links, they point to
an other possible repeat if any, and otherwise they point to the root. The trie
shown in Figure 6.4 is technically speaking not wired, because the wires have
already been converted into alternatives.

36

reject

Figure 6.4: Wired repetition trie

We use a trie to filter out these repeats, but the standard Aho-Corasick method
fails in this case, because we may insert a repeat which has a repeat in it as
substring. The problem is that the strings we use to build the Aho-Corasick trie
may not be substrings of each other. To prevent this we filter out the strings
that have substrings which are repeats themselves.

Example 6.3.1. For simplicity we take a two-letter alphabet {a,b}.

If we make a trie which filters out the strings (n)? and the strings (nnn)?, we
get a trie which has the paths aa and baabaa leading from its root to a final
state. The first path aa is an instance of the rule (n)? and the second path is
an instance of (nnn)?.

The trie should filter out all occurrences of the string aa, but a string like baabab
is permitted by the trie because when matching this string, we see that the first
two letters do not match the rule (n)? (it does not start with either aa or bb). It
does, however match the first five letters of one of the (nnn)? instances (baabaa).
Because the last letter does not match, the string is permitted by the trie, even

though it has aa as a substring.

A way to solve this problem is to build the trie in a different manner. What
we need to do is checking the repeats that we insert into the trie for repeats

37

themselves. We can use the trie for this, provided we insert the repeats in order
of length, the smallest ones first.

Example 6.3.2. Like the previous example, we use an alphabet {a,b} and we
make a trie which filters out the repetitions (n)? and (nnn)?.

First we insert all strings in (n)?: aa and bb.

Now we insert the strings in (nnn)?. When we encounter the repetition baabaa
the trie will reject this repetition, because it has the substring aa in it (twice).
So this particular repetition may not be inserted.

By testing the repetitions for repetitions of lower length, we insert only those
repetitions that add filtering rules. Leaving out the other repetitions does no
harm either, because the strings they would filter out are filtered out already
by the same rules that disqualified the repetition in the first place.

6.4 Pairing

The medical engineers wanted to have a primer set that (roughly) had the
following characteristics:

e The primers must be of length 18.

e Each primer must have a GC-percentage between 20 and 80 percent.

e Each primer must have a melting temperature between 60° and 63° Celsius.
e Each primer pair must have 480-520 nucleotides between them.

e The space between the pairs must be about 10000 nucleotides.

To do this we chose to search for a primer, then skip 480 nucleotides and search
for the next primer. If the next primer is found within the next 40 positions,
we have successfully formed a pair. Otherwise we go back to the first primer,
throw it away and start all over again.

Unlike the Primer software we do not check the primer pairs for similarity
(using alignment scores). Although it can be done for each pair separately, it is
unfeasible to check all primers found (for the genome) for mutual similarities.

38

Chapter 7
Utilities

Now we shall briefly discuss the programs written for our purposes. Note that
most of the discarded ideas are also implemented, but they are not discussed
here.

7.1 Frontend

The first programs written focus on preprocessing. These are fast programs
that simplify the core analysis by converting the DNA to binary data, thereby
making it possible to use fast binary operators instead of string operators.

7.1.1 Comb

This program converts ASCII input to binary input, and it also reserves space
for the output of the Mpass program. By doing this conversion beforehand, we
do not have to do conversions in the critical phase of the core analysis; it also
reduces the size of the input data by a factor of at least 4. We say at least
because all unknown nucleotides and known repeats (multiple n’s) are filtered
out, but the number of n’s is kept, otherwise we would lose the offset in the
genome. So if there are a relative large number of n’s present, we reduce the
filesize even more.

This program recognizes the following options:

option | function | comment,

-i filename | name of an input filename | multiple -i’s may be given
-0 name of the output file

-c name of the comment file | optional

The program can take more than one input file, because our input data consists
of multiple files (chromosome 1, chromosome 2 and so on).

39

7.1.2 Dcomb

This program converts binary input data to ASCII. Thus of every four bits, the
first two are decoded into a nucleotide, the other two bits are discarded. The
sequences of n’s are displayed as the number of n’s followed by the letter n. The
program is used mainly for debugging purposes, but it could also be used to
view the binary file.

This program recognizes the following options:

option | function
-i filename | name of the input filename

The output is written to standard output. No extensive work is done on this
program because it is not used often in practice.

7.2 Analysis

7.2.1 Mpass

The core program, that counts the occurrence of factors of a certain length. It
is named Mpass because it usually makes more than one pass over its input.
This program does not create an output file (like it did in previous versions, see
Table 5.5). Instead it manipulates the input file by filling up the zeroes inserted
by Comb.

This program recognizes the following options:

option | function | default value
-i filename | name of the input and output filename chromFa.bin
-1 length of the factors to search for 18
-m amount of available memory in Megabytes | 64

7.2.2 Repeats

This program filters out the following simple repeats.

* (n)°

2

40

o (nnnnnnnn)?

o (nnnnnnnnn)?

This program only takes one pass over the input data.

7.2.3 Search

The second stage in analysis. It filters out unique primers for which the GC-
count and/or temperature is not good. This program only takes one pass over
the input data.

This program recognizes the following options:

option function default value
-i filename | name of the input filename chromFa.bin
-g minimal GC-percentage 20

-h maximum GC-percentage 80

-t minimal melting temperature in degrees Celsius 60

-u maximum melting temperature in degrees Celsius | 63

-d concentration of annealing primers in mol/ml 50

-e salt concentration in mol/ml 50

-n minimal internal size 480

-m maximum internal size 520

-X minimum external size 9800

The unique factors we have found must be subjected to more filters in order
to be used in practice. Since these filters will reduce the amount of approved
factors, it could be that the number of approved factors is reduced to such a
small number that there is nothing left to work on. Therefore we have made
these options available on the command line, to “play” with.

Some of these options need some more explanation.

The GC-percentages options throw out all factors that have a GC-percentage
outside the given boundaries. The same applies to the melting temperatures.
The concentration of annealing primers option is used in the calculation of the
melting temperature, as is the salt concentration option.

This program does not give all primers that have the right GC-count and
temperature. Under normal circumstances there would still be far too many
primers found. For practical applications with primers, we only need some
primer pairs, with a certain space between them. That is why we implemented
the internal size options. When a primer is found, we skip an amount of nucleotides
equal to the minimal internal size given on the command line and search for the
second primer. When the maximum internal size is reached before a primer pair
could be found, we discard the first primer, skip one nucleotide and repeat the
pairing process.

The last option discussed here is the minimum external size option. This is the
minimum size between the right primer of one pair and the left primer of the

41

next pair. This option is used to skip a number of nucleotides after a pair has
been formed and before a new pair must be formed. There is no maximum to
the size that can be skipped.

The output of this program is written to standard output.

7.3 Backend

7.3.1 Dcall

This program is very similar to the Dcomb program, but it also shows the data
in between. It also recognizes the same options as the Dcomb program does. Like
Dcomb, this program is used mainly for debugging purposes. The main advantage
over Dcomb is that after analysis by Mpass you can see the result of the analysis
with this program. The output is written to standard output.

7.3.2 Getinfo

This program extracts the information field from a binary data file. This information
field is either set by Comb, or Setinfo. It only recognizes the —-i option, with
which the input file is passed to the program. The content of the information
field is written to standard output.

7.3.3 Setinfo

This program can manipulate the info field of a binary data file. It is very useful
if for some reason the information field has the wrong data. This can easily
happen when doing an analysis which manipulates the data file. Things like this
can be stored in the data field.

The program recognizes the following options:

option | function
-i filename | name of the input/output filename
-c name of the comment file

Since the comment file is a plain text file, it can be used to store anything. We
ourselves put the following data in it:

e The name of the person who has made the file.

e The date the file was created.

e The contents of the file (which chromosomes and in what order).
e Whether or not analysis has been performed already on the data.

The last item is strictly speaking not needed, because the data file has its own
flag to see if analysis has been performed or not, but this is still convenient for
the end-user.

42

7.3.4 Statistics

This program counts how many factors are unique, how many are present two
times in the genome, how many are present three times and how many are
present four times or more. This program only recognizes the —-i option for the
input filename.

43

Chapter 8

Conclusions

We conclude that determining all unique primers in the genome is possible up to
a certain length. In principle, this problem should be solvable in constant time,
regardless of the length of the primers. If we were able to store the primer and
the times we encounter it in main memory, then the problem is solved. Because
of memory limitations, we had to take an approach that required an exponential
amount of memory, depending upon the length of the primers. This approach
however, performed better at lower primer lengths. Fortunately, these lengths
were sufficient.

The post-processing, consisting of determining the melting temperature, the
GC-count and filtering out simple repetitions can already be done in constant
time. The output is, because of the way we re-integrate it in the genome, of
constant length, regardless of the lengths of the primers we are counting, but
dependent on the maximum value we wish to count up to.

44

Chapter 9

Further research

The selected primers could be aligned to each other, alignment is a technique to
check for similarities between primers. If two primers are too much alike, both
should be disqualified as primers. Since we search for unique primers, we shall
never find two primers that are perfectly aligned, but mathematical uniqueness is
no guarantee for good results in practice. A program that aligns large quantities
of primers is Bulkal [9], this program is part of a modified Primer3 distribution.
The program Bulkal could also be combined with the Search program. If we
keep track of which primers have been selected, and let Bulkal test newly found
primers against the list, we should end up with a good list of primers if we throw
the primers that have a high alignment score off the list.

The Mpass program could be altered to be distributable over several processors,
as suggested in Section 4.3.1, this way we could find unique factors of even
greater length.

As mentioned in Chapter 8, when computers in the future have enough memory
capacity, a program can be written to solve the counting problem in constant
time. A hash table with 3 x 10 entries would suffice.

The selection of primers could be done on lower lengths before doing so on the
target length. By doing this, we avoid selecting unique primers that are the
result of uniqueness of a substring of it. This would in turn simplify a possible
alignment post-processing step, because primers with a common substring will
have a high alignment score.

It might be a good idea to gather some statistics on the primer pair selection
process (the Search program). For example, how large the actual gaps are
between the primer pairs (external size).

45

Bibliography

1]

2]

3]

Schouten, J.P., McElgunn, C.J., Waaijer, R., Zwijnenburg, D., Diepvens,
F. and Pals, G. Relative quantification of 40 nucleic acid sequences by
multiplex ligation-dependent probe amplification. Nucleic Acid Research
30, No. 12, e57:1-13, 2002.

Dieffenbach, C.W. and Dveksler, G.S. PCR primer: A laboratory manual.
CSHL Press, Cold Spring Harbor, USA, 1995.

Yamada, T. GenomeSURF: Genome-wide Swift Unique Region Finder,
http://surf.gi.k.u-tokyo.ac.jp/

UCSC Genome Bioinformatics, http://genome.ucsc.edu/

Knuth, D.; Morris, J., and Pratt, V. Fast pattern matching in strings.
SIAM J. Computing 6, 323-350, 1977.

Aho, A. and Corasick, M. Efficient string matching: An aid to
bibliographic search. Communications of the ACM 18, 333-340, 1975.

Breslauer, K.J., Frank, R., Blocker, H. and Marky, L.A. Predicting DNA
duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83,
3746-3750, 1986.

Rozen, S., Skaletsky, H.J. Primer3,
http://www-genome.wi.mit.edu/genome_software /other /primer3.html,
1996, 1997, 1998.

Laros, J.F.J. Primer design for MPLA experiments. Project report, Leiden
University, 2005.

46

