

k-mer programming library and toolkit

Jeroen F. J. Laros

Leiden Genome Technology Center

Department of Human Genetics

Center for Human and Clinical Genetics

Profiling

We frequently want to know something about raw datasets.

Profiling

We frequently want to know something about raw datasets.

Within a dataset (no or unknown reference):

- Quality control.
- Coverage estimation.
- Quality of a de novo assembly.

Profiling

We frequently want to know something about raw datasets.

Within a dataset (no or unknown reference):

- Quality control.
- Coverage estimation.
- Quality of a de novo assembly.

Between datasets:

- Quality control.
- Phylogeny.
- Metagenomics.

Counting k-mers

We choose a k and count all occurrences of substrings of length k.

Counting k-mers

We choose a k and count all occurrences of substrings of length k.

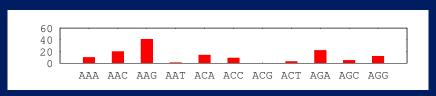


Figure 1: A profile of 3-mer counts.

In Figure 1 we see a part of 3-mer counts; **AAA** occurs 10 times, **AAC** occurs 20 times, etc.

Why k-mers?

The usage of k-mers is appealing since:

- They are easy to work with.
- Fingerprinting of samples is possible (even for a small *k*-mer length (around 10)).
- Can be used to make a database to match against.
- Comparison between datasets takes little time compared to alignment.

Choosing k

k can not be too small:

- k = 1 will result in loss of all subsequence information.
- k = 2 will give you information about di-nucleotides.
 - But, pattern growth needs also position information.
- There is only one unique 10-mer in Human (hg18).

Choosing k

k can not be too small:

- k=1 will result in loss of all subsequence information.
- k = 2 will give you information about di-nucleotides.
 - But, pattern growth needs also position information.
- There is only one unique 10-mer in Human (hg18).

But, k can not be too large either:

- Almost all 18-mers are unique in the Human genome.
- Since this is not error tolerant:
 - · Read errors.
 - Assembly errors.

Choosing k

k can not be too small:

- k = 1 will result in loss of all subsequence information.
- k = 2 will give you information about di-nucleotides.
 - But, pattern growth needs also position information.
- There is only one unique 10-mer in Human (hg18).

But, k can not be too large either:

- Almost all 18-mers are unique in the Human genome.
- Since this is not error tolerant:
 - · Read errors.
 - Assembly errors.

This is solved by collapsing profiles.

A programming library and command line interface.

Uses a binary encoding of a k-mer as index:

• Only counts need to be stored.

https://humgenprojects.lumc.nl/svn/k-mer/

A programming library and command line interface.

Uses a binary encoding of a k-mer as index:

• Only counts need to be stored.

Stored profiles can be:

- Loaded.
- Saved.
- · Manipulated.
- Compared.
- ...

https://humgenprojects.lumc.nl/svn/k-mer/

Command line interface.

index Make a k-mer profile from a FASTA file.

merge Merge two k-mer profiles. balance Balance a k-mer profile.

showbalance Show the balance of a k-mer profile.

positive Only keep counts that are positive in

both profiles.

scale Scale profiles such that the total num-

ber of k-mers is equal.

smooth Smooth two profiles by collapsing sub-

profiles.

diff Calculate the difference between two k-

mer profiles.

matrix Make a distance matrix any number of

k-mer profiles.

Command line help.

All commands are documented.

```
> python kMer.py diff -h
usage: kMer.py diff [-h] -i INPUT INPUT [-d] [-s SUMMARY] [-t THRESHOLD] [-b]
                    [-p] [-S] [-m] [-e] [-P PAIRWISE] [-n] PRECISION]
Calculate the difference between two k-mer profiles.
optional arguments:
  h, —help
                  show this help message and exit
  -i INPUT INPUT
                  pair of input files
                  scale down (default=False)
  -d
 -s SUMMARY
                  summary function for dynamic smoothing (int default=0)
  -t THRESHOLD
                  threshold for the summary function (int default=0)
                  balance the profiles (default=False)
                  use only positive values (default=False)
                  scale the profiles (default=False)
                  smooth the profiles (default=False)
  -m
                  use the euclidean distance metric (default=False)
  -P PAIRWISE
                  paiwise distance function for the multiset distance (int
                  default=0)
                  number of decimals (int default=3)
  -n PRECISION
```

Listing 1: Help for the diff option.

Balancing.

When analysing a dataset:

- We either see a *k*-mer or its reverse complement (50% chance of either).
- If sequenced in sufficient depth, we expect a balance between forward and reverse complement *k*-mers.

Balancing.

When analysing a dataset:

- We either see a *k*-mer or its reverse complement (50% chance of either).
- If sequenced in sufficient depth, we expect a balance between forward and reverse complement *k*-mers.

Funcionality in kLib:

- We can split a profile into a forward and a reverse complement profile.
- We can calculate the balance between these sub-profiles.
- We can balance the profile by adding *k*-mer counts to their reverse complement and vice versa.

Smoothing.

How do we compare multiple k-mer profiles?

One sample might be sequenced deeper than the other, so the optimal k might differ between comparisons.

Smoothing.

How do we compare multiple k-mer profiles?

One sample might be sequenced deeper than the other, so the optimal k might differ between comparisons.

GTAAGTAA GTAAGTAC GTAAGTAG GTAAGTAT GTAAGTCA GTAAGTCC GTAAGTCC	0 1 0 1 9 8 3 7	⇒	GTAAGTA GTAAGTCA GTAAGTCC GTAAGTCG GTAAGTCT	2 9 8 3 7
--	--------------------------------------	---	---	-----------------------

Figure 2: Smoothing by collapsing sub-profiles.

Smoothing.

The function to determine when to smooth is a parameter:

- Median.
- Minimum.
- Average.
- ...

This function has a threshold, which is also a parameter.

Smoothing.

The function to determine when to smooth is a parameter:

- Median.
- Minimum.
- Average.
- ...

This function has a threshold, which is also a parameter.

We can index with a large k-mer size, this method automatically uses the optimal size when comparing.

Library for k-mer profiles.

kLib:

- Analyse a fasta file.
- Loading and saving of profiles.
- Merging.
- Balancing / splitting.

Library for k-mer profiles.

kLib:

- Analyse a fasta file.
- Loading and saving of profiles.
- Merging.
- Balancing / splitting.

kDiffLib:

- Smoothing.
- Make a comparison recipe.

Library for k-mer profiles.

kLib:

- Analyse a fasta file.
- Loading and saving of profiles.
- Merging.
- Balancing / splitting.

kDiffLib:

- Smoothing.
- Make a comparison recipe.

kMer:

• Command line interface.

A more general library.

These functions are not limited to k-mer profiles.

metrics:

- Scaling.
- Extracting positive counts.
- Multiset distance function.
 - Pairwise distance functions.
- Euclidean distance function.
- Summary functions for the smoothing algorithm.

API documentation.

Questions?

Acknowledgements:

Yahya Anvar

https://humgenprojects.lumc.nl/svn/k-mer/